

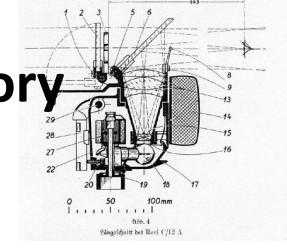
OSHKOSH 2024 HUD DIY HUD Brief: Contact; Cecil "TRON" Jones → TRON@flyonspeed.org

HUD Project Presentation Summary

- 1. What is a HUD?
- 2. Short HUD History
- 3. Why have a HUD/HMD in an Experimental Aircraft
- 4. Design Goals
- 5. Current Operational Experimental HUD's
- 6. FlyOnSpeed.org HUD Project Goals
- 7. System Overview & Supported Hardware
- 8. Software System Design

What is a HUD?

 A head-up display (or heads-up display), also known as a **HUD** is any transparent display that allows the pilot to look outside the aircraft while also viewing critical aircraft data without requiring the pilot to also look inside the aircraft.


Elbit Skylens (HMD)

F-18

C-130J

Modern HUD Design History

- 1 Use CRT to generate a green phosphor image on a combining glass
- 2 Use (LED) light source, modulated by LCD screen (or DLP) to project image on a combining glass
- 3 Use optical waveguides or LASER to produce images directly in the combiner.
- 4th Gen—Use a Micro-OLED transparent Color display that has its built in lens for each pixel to display images (Data/Video)

Why have a HUD in a Experimental Aircraft?

- HUDs enhance safety by providing critical flight information in the visual (Heads-Up Outside the Aircraft) Pilot Environment.
- Typical aircraft HUDs display Airspeed, Altitude, Attitude
 (pitch/roll), a Horizon Line, Heading, Vertical Velocity, AOA &/or
 ("α" #), and Slip/Skid indicator.
- Boresight/waterline symbol,
- Flight Path Vector (FPV) or Velocity Vector
- G's, QNH, Wind Dir/Speed, & OAT.
- Critical Traffic Data (TD Box -Target Designate)
- Navigation/Comm Data (For Enroute, approach and landing)
- Critical Aircraft/Engine Data (+ Other information)

Generic HUD Design Goals

- Focus The HUD display should be focused to Infinity
- <u>Eyebox</u> The fixed HUD produces an image inside a three-dimensional area called the eyebox. Head movement too far up/down left/right will cause the display to vanish off the edge of the HUD.
- <u>Luminance/contrast</u> HUD should have luminance/contrast adjustments to account for Sun/Clouds/Night/etc.
- <u>Boresight</u> Aircraft HUD symbology should be aligned with the aircraft's three axes, so that displayed data conforms to reality (typically ±7.0 milliradians), but may vary across the HUD's FOV.
- Scaling The displayed HUD image (flight path, pitch & yaw), should be scaled so picture overlays outside world in an exact 1:1 relationship. Example; object 3 degrees below horizon should appear at the –3 degree index on the HUD.

Available (Economical?) Experimental & TSO'd HUD's

Epic OPTIX Eagle 2 (HDMI Video Input) \$1.5K (Made for Aircraft → Infinity) Daylight usable 20K Nits, Night Compatible

XREAL Air 2 PRO AR (Augmented Reality)
HMD \$450 HDMI Video Input
Made for AR → 12 ft
Daylight usable, Night Use is TBD

DUAL HUD Display (Interfaces with STRATUX/ADSB via WIFI/BT) \$549 (DUAL/ACS/Sportys (Made for Cars → 2 Meters)

MGF SKYDISPLAY (HUDLY $v2 ?) \sim $23-25K$ TSO (Interfaces with TSO'd Avionics) (Made for Cars/Aircraft \longrightarrow 2 Meters?)

GRT Hudly Classic HUD (HDMI Video Input) (In Production but Not Available from HUDLY?)

(Made for Cars → 2 Meters)

Why use the Epic Optix HUD?

- The most important innovation in bringing a HUD to GA is to be able to produce a quality but affordable product.
- Epic Optix achieved this by:
 - Designing a HUD that's bright enough for full Sunlight readability (in Full Color using LED/DLP technology)
 - HUD Focuses to Infinity
 - Its designed to fit in the most GA/Experimental aircraft as possible
 - It is affordable at \$1500, by commercial HUD standards this price is a rounding error

Why use the XREAL AR HMD?

- AR (Augmented Reality) "Smart" Glasses are the technology of the future.
- XREAL AR Glasses bring new Micro-OLED technology to the cockpit:
 - AR allows you to both see the outside world as well as projected Data/Video simultaneously. HUD display presently does not change with head movement
 - The full color high res (1920x1280) SONY OLED 0.5" display projects what appears to be a 135" diagonal computer screen some 12 feet in front of the aircraft and the pilots eyes.
 - This low power Glass type display weighs less than 3 oz's
 & fits under a Headset
 - This technology is affordable (~ \$400-\$500) and fits
 into all cockpits without any significant installation cost
 - Our FlyOnSpeed team is also working to incorporate a simple & reliable Micro Video camera head tracker to improve the HMD cockpit integration

FlyOnSpeed.ORG HUD Project Goals

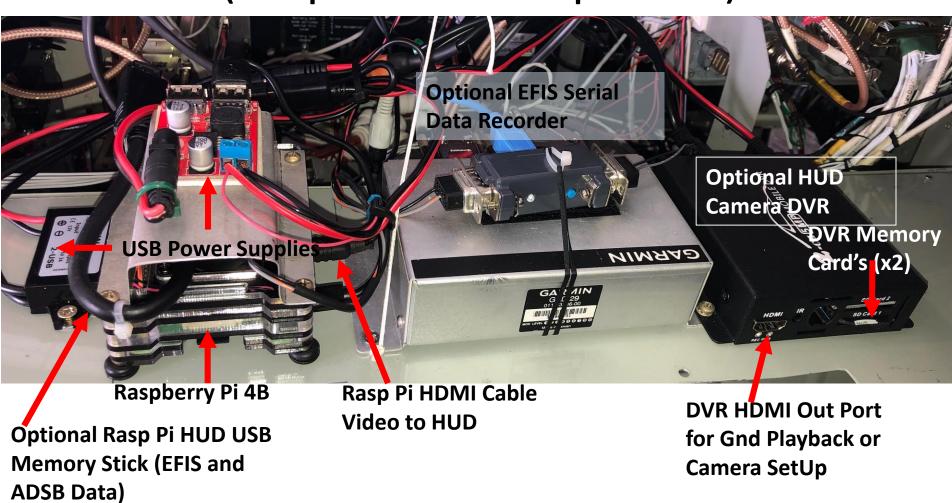
- Enhance Flight Safety
- Use affordable technology and open source (Free) HUD software
- Make it to be easily integrated with current Experimental EFIS Systems.
- Use a quality HUD that can be installed in many experimental aircraft.
- Use a capable Micro-Computer. Currently a RASPBERRY PI 5+ ~ \$80
- Do the research and development to provide a baseline HUD design
- As much as possible make the system pilot/user friendly
- Allow users so inclined to also modify or create their own HUD designs
- Provide a path for an optional 2nd A/C display (HDMI Video), or display the HUD Camera view via the Camera or DVR outputs.

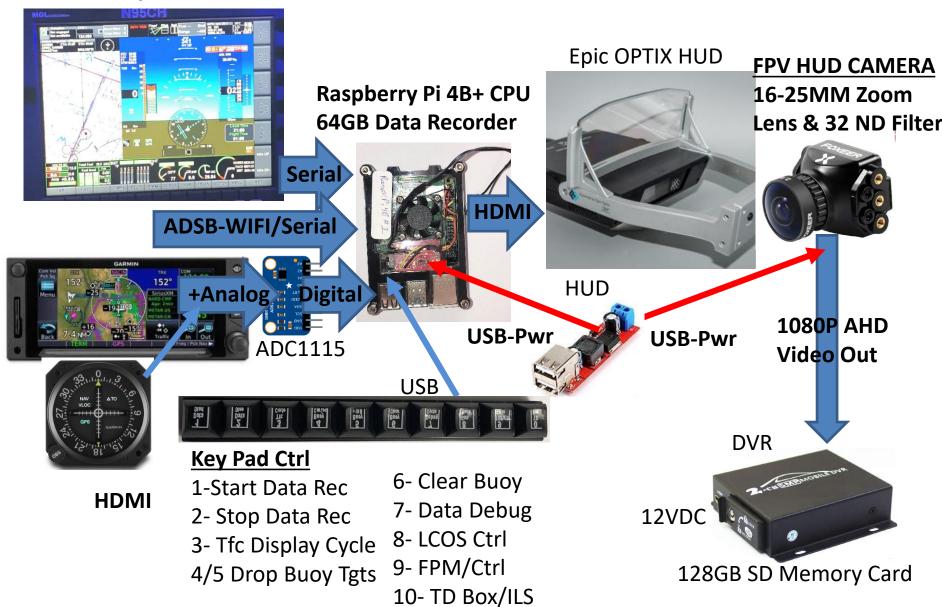
Basic OnSpeed HUD Design Info

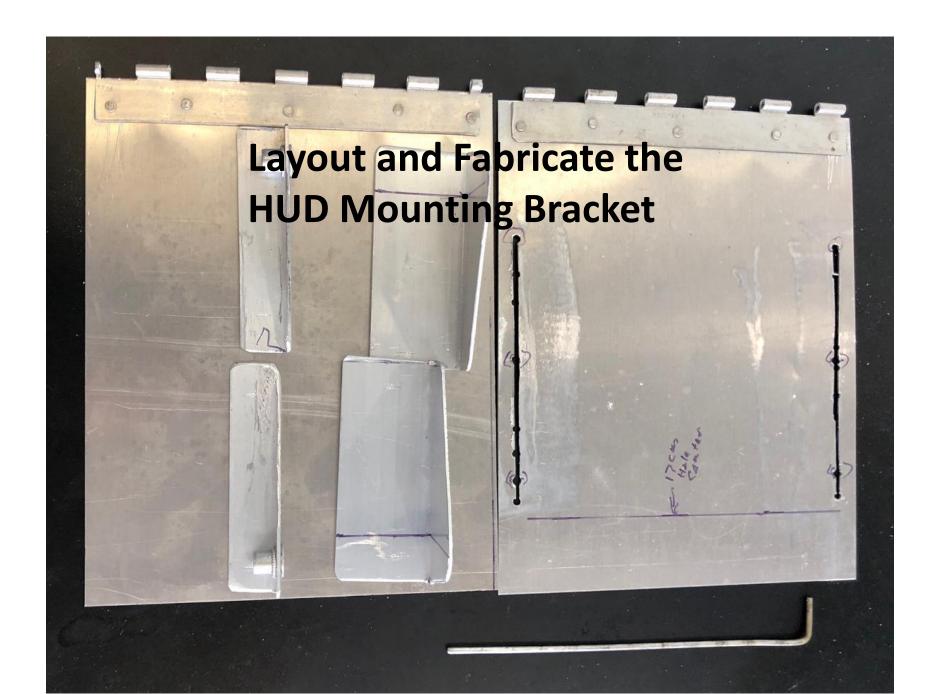
HUD CDI Localizer + Localizer/Glideslope 0 fpm **Needles Mode** TAS 0 kts GS 0 0.0°£ G 0.0 L------0 fpm 0 kts GS 0 0.00£ -0 fpm TAS 0 kts GS 0 0.0°f G 0.0

BFM Video

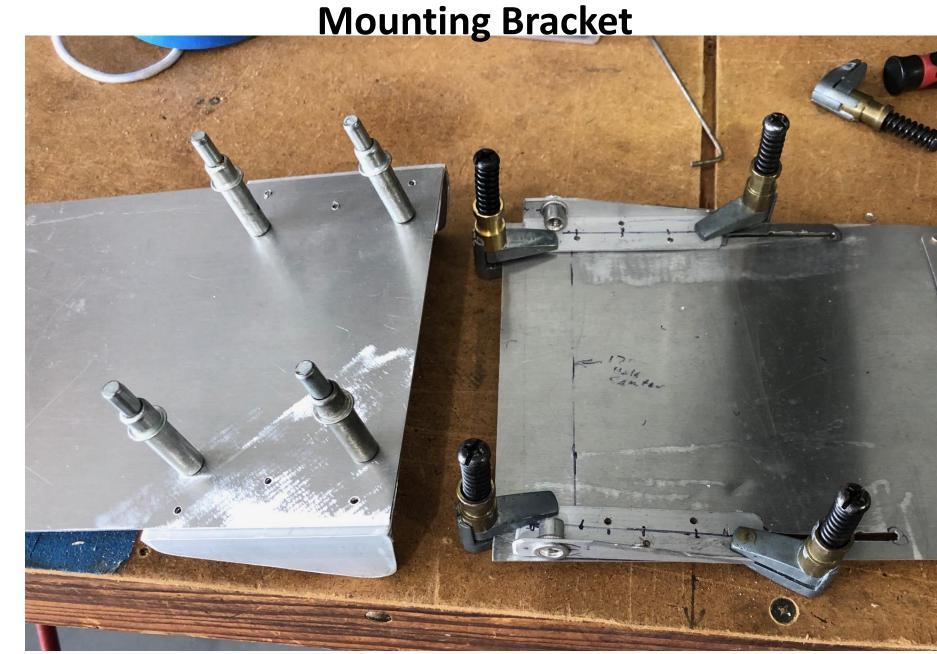
My RV8 HUD Install Larger Tinted Non-Vans Canopy


Determine Head position / Line of Sight for HUD position.

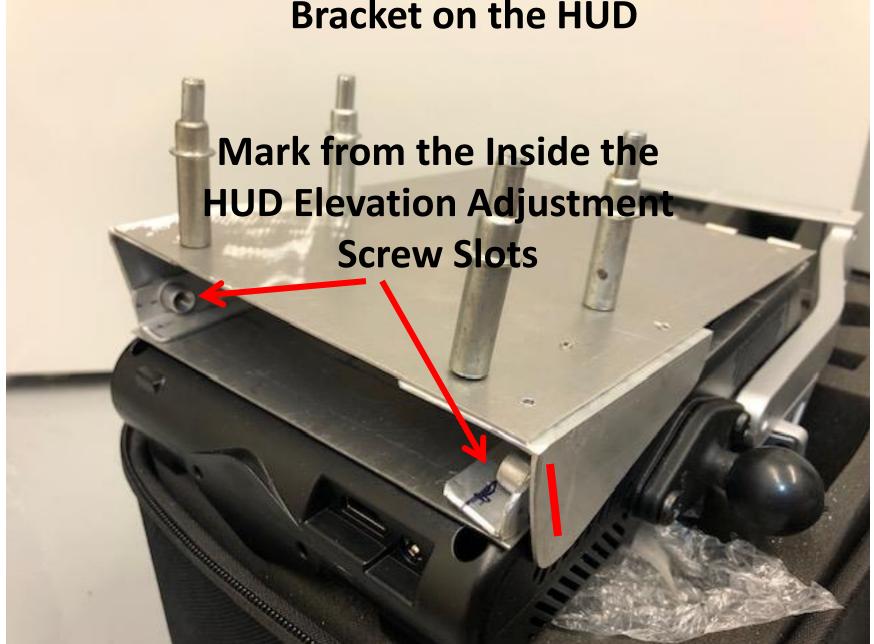

Next determine how the HUD should be installed.

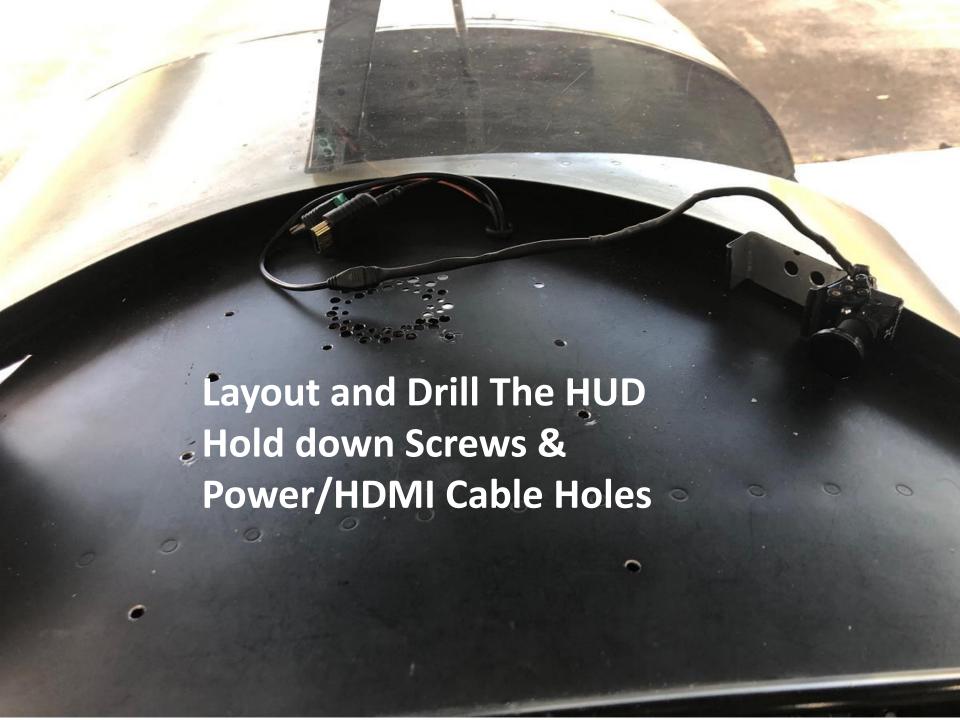


Locate where to install your HUD Support Electronics (Required and Optional)



EFIS/NAV HUD Interconnections

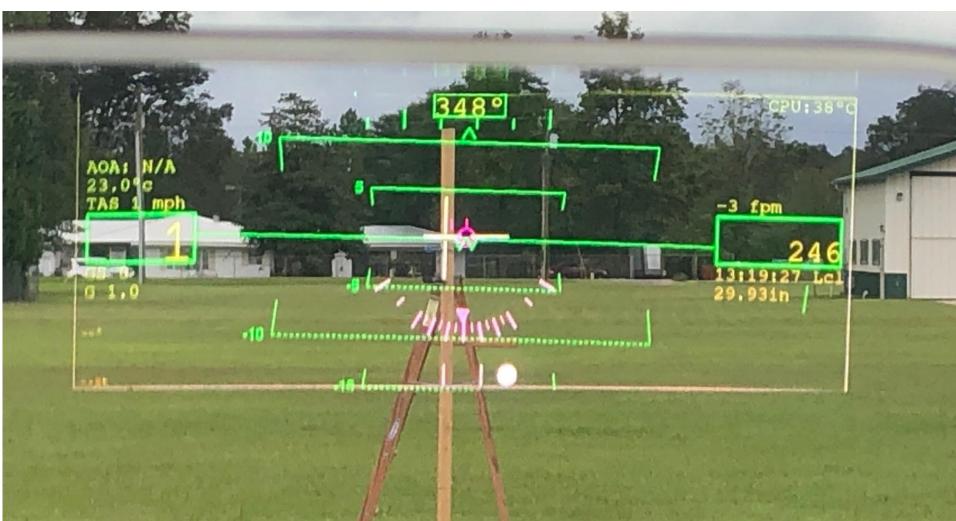




Assemble the HUD

Fit Check HUD Mounting Bracket on the HUD

Install the HUD Bracket


- Screws Allow Elevation Adjustment
- Piano Hinge Gives Bracket Rigidity
- Recommend to Balance Prop to reduce HUD Vibration (Most vibration Above 2400 RPM)

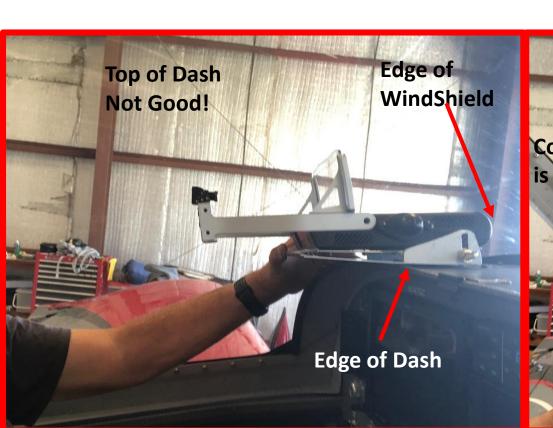
Aligning the HUD Boresight

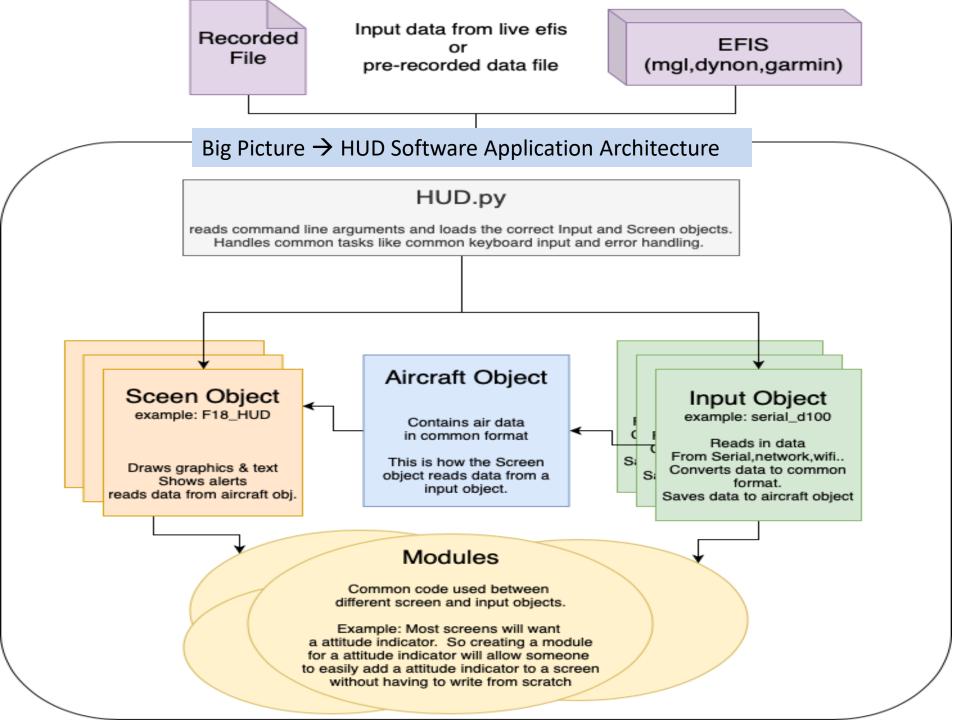
Azimuth Gnd Install Alignment is Critical

- 1. HUD Bracket Azimuth is Fixed Elevation is Adjustable
- 2. Minor adjustments can be done in software config file

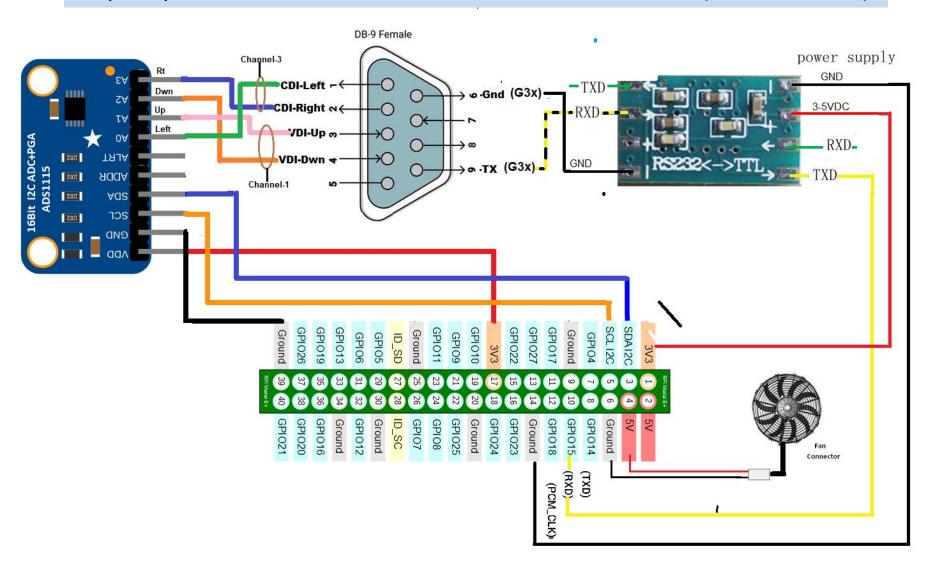
HUD Complete install with Camera and Mounting Bracket

HUD Picture at Infinity (HUD Graphics fills screen from Pilot View Box)


RV8 HUD Install in - side profile (Vans Standard Windshield)



HUD Test Fit in RV14


To Cut and fit HUD under Dash & windshield would likely put HUD "EYEBOX" to low for normal use?



Raspberry Pi connected to ADC1115 + RS232 connected \rightarrow EFIS (+ ADSB via WIFI)

FlyONSPEED Head Up Display Project

*Featuring the most cost effective & Highest

Quality Gen Aviation HUD Available Today*

The Epic Optix EAGLE 2 HUD

Note: Any HBMI or NTSC/PAL compatible HUD/VIDEO Display can be used.

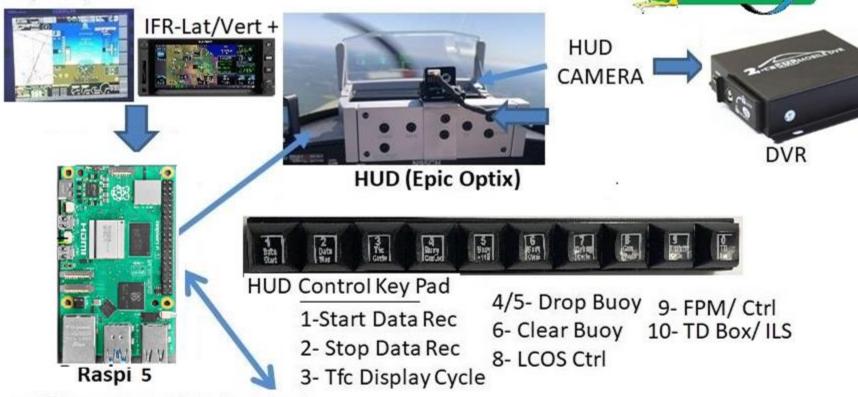
Why have a HUD in an Experimental Aircraft?

How to get the Software

Go to the Google Drive Link below and download our free HUD software.

- The link contains both the HUD/HMD Raspi5 SW image and the directions for writing and using the Raspberry Pi 5 HUD/HMD Software Image to a Micro SD memory card.
- The actual file is fairly large (2.17GB Zipped), and unzips to approximately 8GB including the instructions. This will run fine on a RaspBerry Pi 5 4GB CPU. The 8GB is the approx. size of the memory card the image was saved from, but you should use at least a 16GB Micro SD Memory card to write the image back to as some 8GB memory cards will be too small. While downloading a 2.17GB file takes time, its far faster than formatting and loading from scratch all the software required to run the HUD program.
- The SW Demo Config File is set for G3x & MGL EFIS but can be easily changed
- HUD_Raspi5_8GB_14Feb24_Zipped_Image
- https://drive.google.com/drive/folders/1R4SjE_foUbUYr6_6DubKYNR5OtGSoxw Q?usp=sharing

QUESTIONS??

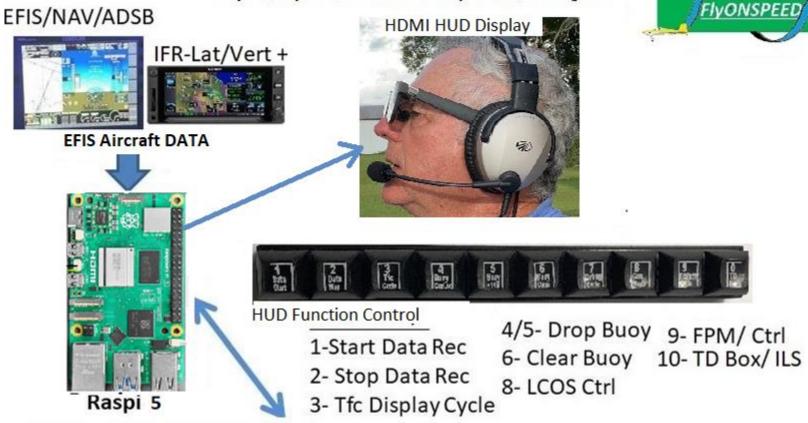


FlyOnSpeed AOA Raspberry Pi 5 Software Features Include:

- Supports serial from MGL, Garmin G3x, Dynon Skyview & D100, and GRT
- Supports wifi from Stratux, iLevil BOM, iLevil 3, uAvionix Echo UAT, Dual XGPS190, Dynon ADSB wifi, etc.
- Software and instructions available for Free on Google Drive & Github
- Users can use provided HUD screens or build custom EFIS or HUD screens
- Record flight log to and Playback from external USB drive (fast forward playback avail)
- All screens look and work the same for all supported data input.
- All display screen sizes and ratios supported. (set through config)
- Touch screen support
- 30+ FPS on Raspberry Pi 5 (Frame rate impacted by Data and Graphics)
- Remote keypad / user input support. (USB 10-key number pad works good)
- Display flight data in Knots, Standard, Metric, F or C (set in config)
- Designed for Raspberry Pi but also runs on Mac OSx, Windows, and other linux systems.
- Can display CDI needles for NAV and approaches. (With Analog→Digital Chip & CDI Needles Input) or direct NAV Data
- Use multiple data sources (IE. Serial, Wifi, Analog inputs at the same time)
- Shows traffic as scope display, or target flags (When ADSB traffic source input available)
- User dropped buoy targets for virtual dogfighting
- Has BFM mode (Basic Fighter Maneuvers) for 1v1 with cooperative wingmen
- Has HUD color Camera & DVR for post flight debriefs
- Text Debug mode (Helpful to see the actual raw data values during playback)
- Now updated to Python 3!

FlyOnSpeed HUD Project

EFIS/NAV/ADSB



<u>Available Systems OnSpeed HUD (Raspberry Pi)</u> <u>can Integrated with</u>

- 1) Garmin G3x Serial
- 2) MGL iEFIS-Serial
- 3) Dynon D10/D100/Skyview-Serial
- 4) OnSpeed AOA M5 Serial Protocol
- 5) iLevil BOM, iLevil 3 --> WIFI (AHRS/ADSB-Traffic)
- 6) Stratux --> WIFI (AHRS/ADSB-Traffix)
- 7) uAVIONIX ECHO UAT (In/Out) --> WIFI (ADSB/Traffic)

- 8) Dual XGPS190 --> WIFI (AHRS/ADSB-Traffic)
- 9) Dynon ADSB --> WIFI (ADSB/Traffic)
- 8) Missing GRT
- 9) Garmin/Avidyne/King/etc NAV Lat/Vert Analog Needle Display

FlyOnSpeed AR HMD/HUD Project

<u>Available Systems On Speed HUD (Raspberry Pi)</u> <u>can Integrated with</u>

- 1) Garmin G3x Serial
- 2) MGL iEFIS-Serial
- 3) Dynon D10/D100/Skyview Serial
- 4) OnSpeed AOA M5 Serial Protocol
- 5) iLevil BOM, iLevil 3 --> WIFI (AHRS/ADSB-Traffic)
- 6) Stratux --> WIFI (AHRS/ADSB-Traffix)
- 7) uAVIONIX ECHO UAT (In/Out) --> WIFI (ADSB/Traffic)

- 8) Dual XGPS190 --> WIFI (AHRS/ADSB-Traffic)
- 9) Dynon ADSB --> WIFI (ADSB/Traffic)
- 8) Missing GRT
- 9) Garmin/Avidyne/King/etc NAV Lat/Vert Analog Needle Display

FlyOnSpeed.ORG HUD Project Goals

- Enhance Flight Safety by helping pilots build a Heads Up Display (HUD) using data from their existing EFIS or other sources.
- Do the research and development to provide a flight tested HUD design that uses affordable technology driven by open source (Free) HUD software that is easily integrated with current Experimental EFIS Systems.
- Use a quality HUD that can be installed in many experimental aircraft.
- Use a capable Micro-Computer. Currently a RASPBERRY PI 4B+ ~ \$80
- Make the system pilot/user friendly as much as possible.
- Allow users so inclined to also create or modify their own HUD designs,
- Provide a path for an optional 2nd A/C display (HDMI Video), or display the HUD Camera view via the Camera or DVR outputs.

How to use GitHub

- 1. Create a GitHub account (Free)
- 2. Sign into https://github.com/flyonspeed/efis to hud
- 3. Download instructions for setting up Rasp-PI
- 4. Perform a "git pull" to download current HUD programs
- 5. Select HUD program to use (test with sample HUD Data)
- 6. If ready to help program coordinate with Chris and myself.